
AD— Aflk 855 CALIFORNIA UNIV LOS ANGELES SCHOOL OF ENGINEERING A—ETC FIG 20/11 NH
FUNDAMENTALS OF THE STATI5TICAL THEORY OF FRACTURE,CU) 1
JUL 77 5 0 BATDORF N0001* 76 C Okl45

UNCLASSIFIED UCLA EN6 7759 NL

A D A
044866 .1

END

JO 77

F Al



- ---~ -~ -~

- - - “ - ‘  “nfl - - 
~~.. ~r-’ “‘ - C. -. - —- — - .

‘7

I!,
4,rn

©

~~~~Sponsored by the
Department of the flavy -

~~~~~~ 
‘Office of Nav~1 Research 

,
. 

~
.

under Contract Not~ 00014—76—C—0445 .

~

Co—Sponsored by ~~~~~ C~Air Force Office of Scientific Research .-

I~.r
Principal Investigator: G.H.Sines

Co—Principal Investigator: S. B .Batdorf 

- . - ---~—-— -“ ' -  - “ -.~~~-“~~~~-‘.. .-

UCLA—ENC—7759
JULY 1977

FUIDAMEUTALS OF THE STATISTICAL ThEORY OF 

~~~~~~~
S.B. BATDORF

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- .‘— ‘ •,,—~~,~~ -—~~~—~—t - ‘r- ~~~~~’*— ,,p~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ,?~~~~r-~~- Trfl,.fl ’TJrt : ~~~~~~~~~~~~~ -

‘ / L )

1 w
• ___j  -

~ Reproduction in whole -or in part is permitted for .
any purpose of the United States Government

C-,

UCLA • SCHOOL OF ENGINEERING AND APPLIED SCIENCE
~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ u~~. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

.._.
~~~

.— 
~-“.——‘~.

. - ~~~~~~~~~~~~~~~~~~~~ ,

_ _ _ _  _ _  ~~~~~~~~~~~~~ — - - -~~ - - - --‘ --~~~ ~- .-~~~~~~~~~----—  -~~~~~~~~~~~~——-- - -~~



~1~

SE j R l ’ ’~ C~.. A S $ I F I C A ~ c;.~ OF ‘~~~S PA~~: W.’,.~ for.. Fc r o , — j ,

REPORT DOCUMENTATION PAGE BEFOR E COMPLETING FORM
1 R E P O R T  NUMBE R 2 GOVT AC CE SSION NO. 3~ REC I P I E N T $ C A T A L O G  NUMBER

I CLA—ENG --7759 ________________________________
S. TYPE OF REPORT S PERIOD COVERED

L FUNDAMENTALS OF THE STATISTICAL THEORY OF
~ RACTU RE, _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

— “ “
~$ PERFORMiN~~~QR~ BEPORT NUMBER

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  LJ ~j ~ UCLA—EN C—7759 j
7.  A J T ~.rOR~~ , 

‘, e. ’C~~N’1 ’WACTORG RAp4T NIJMBER(.)

c ,~ S.BiBa tdor f  r’ .
I ; C - 4451~~ ( 1~ — . . . 1

9. P~~RFØRM~~~ ORGANIZATION NAME AND ADDRESS 10. PR0~~RAM ELEMENT. PROJE CT , TASK

School of Engineering and Applied Science
University of California
Los_Angeles,_ California ____________________________

II. CO~~TR O~~~~~ G O F F I C E  NAME A ’ .C ADDRESS ~~l2. f~~ PORT rE

Office of Naval Research Jul 77
Arlington , Virginia 13. NO OP~~~GEs

14 M O N IT O R I N G  A G E N C Y  N AM E S A DOH ESS ( I1  dIff,,.n I Iron, Cont ro l l i n g  Of l f r . )  IS. S E C U R I T Y  t~’X~ S. (of Ch ic

Unclassified
Department of the Navy

IS.. DECLASSIFICATI ON DOWNGRA DING
SCHEDULE

16 . D ISTR IB~~TI ON S T A T E M E N T  ~‘i  th i , ,  Rr p o r e )

Distribut ion is un l imi ted

17 DIS’ r RI SLiT ION S T A T E M E N T  of rho ab,r,act .ni.,ed In B lock 20 , II dlfI.r.n l from R.ponl) 4I~~~~c’ ~iI:~i
~

IS S U P P L E M ENT A R \  NOTES

IS R EV  W ORDS (C o nt in u e  ., r.o.t.c cia. 1 n.c•c•ary and idenlily by block numb.r)

mater ia l  f a i l u r e  s ta t i s t ica l  f a i lu re  theory
brittle fracture ceramic fracture
fracture statistics fracture

20 A8STR~~CT t Cont Inoc on t.n.t.. aid. i i  n.c....ry and id .n t i?y by blotk number)

The first important study of fracture statistics was that of Weibull.
His work was based on the tacit ass~~p t1on that only the component of stress
normal to a crack plane contributes to its fracture , and on the use of simp le
analytical formulas for failure probability. Recent progress in short—term
f rac ture includes the use of more ref ined f r ac ture cri teria and a search
for better distribution functions for the frequency of cracks, based on
microstructural considerations . Use of the critical value of strain energy \ 

‘

—.-— (

DD I JAN 73 1473 EDITION OF I NOV 55 IS OBSOLETE
S/N 0102 IF 014 .6601

SECURITY  CLA SSI F ICAT ION OF THIS PAGE (B~s.n Oar. tnl•r d) 

~~—.___ . -



~~~..— ---- —~~~~~~~———
_ ._.

~— -~~~~~~~
. -..-

~
-.--S, 

~~~~~~~~~~~

— 
SECURITY CLASSIFICATION OF THIS PAGE (WIr.n flat. Enl.r.d)

release rate as a fracture criterion leads to improved agreement with experi—
ment. Consideration is also given to the statistics cf fracture in static
fatigue and in dynamic fracture .

I 

S E C U RIT Y  C L A SSI FICATION OF THIS PAGE(W R.n fl at . Enrotod

_ _ _ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- - - .



1

- ;

~~~~~~~~~~
Jl~s’I. , 

‘,l II •, . — . . — —

BY
DISTRI BU~ :1’. ~.

— — 
. r d

FUNDAXI~~TALS 01” T}1f: s’rATISTlC: AL TPEORY 0F FRACTURE

S. B. B a t d o r f

Nat .e ria i s  D epa r tmen t
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ABS TRACT

The f i r s t  iL.~1or t~’nt s tud y of f r a c t u r e  s t a t i s t i c s  was t ha t  of
W e i b ul l .  His wotk  was based on the t ac i t  assumption that  only the
component  of str e s s  norma l to a crack p lane c o n t r i b u t e s  to its
f r a c t u r e , and on th~ u~;e of s imp le a n a lyt i c al  fo rmulas  for  fa i lu re
p r o b a b i l i t y .  Rec&nt progress  in s h o r t— t e r m  f r a c t u r e  inc ludes  the
use of more r e f i n e d  f ra ct u r e  cr1 Len a and a search fo r  b e t t e r  dis—
t r i h u t i o ri  fu n c t i c . n ’~ f o r  the f re q u e n cy  of cracks , based on micro—
s t r u c t u r a l  con s i d c ’r a t  i on s .  Use of the c r i t i c a l  va lue  of s t ra in
energy rt~]eas ’ r . i t t ’  a~; a f r a c t u re  cci  t t r ion  leads to improved
ag ree i icnt  wi th cx~r r i m e n t . . Considera t ion  is also given to the
s t a ti st i c s  o~ f r a c t u r e  in  S t a t i c  f a t i gue and in dynamic f r a c t u r e .

INT R ODU CT iON

Ceramic  m a t e r i a l s  ar e  g e n e r a l l y b r it t l e , and n om i n a l l y ident i-
cal  Sp C C J i~~en ~~ Elf e l i n t t i c  m a t e r i a l  may e xh i b i t  l ar g e  ~‘aria l ions in
f r a c t u re  st r e~;:. , e~ i~~ ~ i a l l y if the spec1men~ arc s!,lall . When br i t -
t le  ni~’i t c r i ah;  are c.p~ oyed in p r a c t i c a l  s t r u c t u re s , the desi gner
mus t be ahlc to assure  h im se l f  of an a c c ep t a b ly low prob~~~i l i t y  of
f a i l u re  d u r i n g  s e r v i ce .  Typ i ca l ly ,  on the  bas i s  of l a b o r a t o r y  da t a
on a l im i t e d  numb er  of specimens u n i f o rm l y loaded in simp le tension
~r cur t ’  b e n d i n g , t I l t ’  p r o b a b i l i t y  of f a i l u re  must be c a l c u l a t e d  fo r
s t r u c t u ra l  mcnI h cr ~; of d f f e r c n t  si res and shapes and under  corn--
pletc] y d i f f e r e n t  loa d in g  c o n d i t i o n s . The too l  f o r  accomp l i s h i n g
this  Is f r a c t u r e  s t r ~l i st i C s .

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _



The fi r~~t it po rta~~ cant r ib ut ion t o  this subject was made by
Weibul l  in 1939 [1 , 2 3 ,  and h~~s t h e o r i e s ,  are st il l thc basis for
most calculations in this f t ’lcl . lie exp loited ti n analogy between
a stressed b r i t t l e  s t r u c t ur e  anJ ~i loaded cL~i i i , w h i c h  b r eaks  when
the s t r e n g t h  of i t s  r:c ’akesr l i r c ’-~ i s e:- . ecde d . l~e for e  dL s c .u s s i n g
weakest ii  r~ th a or y  ~~~~ ] , I t i i~~p r u ~ ~~t t  t o  et i q u l  Ye i~ito its
range of app l i ca b i l i t y .

Clear l y, the fracture of a ic~;l e f ib e i  i s  • . .i.~ or to t.b~~~

b r e a k i n g  of a c h a i n .  The f i b e r  :mly be rt ’~~ ch ’d as a l i ne a r  a r ray
of very short  e le rI e n t s , and the  f r a c t u r e  u~ • i r.y e l c~~r n t  causes
f a i l u r e  of th e f i b e r  as a wh o l e .  S i m i  i~ i r l y ,  when an i s t L~ted
crack in an e l a s t i c  bod y is loaded normal  tc i t s  p lane , i t  wil .l
become unstable  and grow catas t . r r p h i c a l l y ,  caus ing  f r a ct u r e . The
f r a c t u r e  s tress of the e n t i r e  b ody  1:; that of the  r.. ;eaheat  crack .
On the other hand , there are many s~~tu a t i o a~; to wh i ch ThT does not
appl y .  For ins tance , in  a b u n d l e  of f i b e r s  the f i r s t  f i ber  fa i l -
ure does no t  o rd ina ri ly cause fa i  lure  in  t h e  b u n d l e  as a w h o l e ;
ra ther , f a i l u r e  is the r e s u l t  of dam age accu~- - t i l a t i n n .  S imi l a r ly ,
in some s t ress  s tat e s  ( e . g .  pure coii~~r es s ic n )  a c ro ck  in an e las t ic
bod y wi ll  genera lly grow in a d i r ec t . .ien ~:l I i ch  r e s u l t s  in crack
a r r e s t .  Here , also , f a i l u r e  is a r e sult  of p r o gr e s s i v e  damage ,
and 1,’TI~i’ doe s not app ly .

Ideall y ,  f r a c t u r e  st a t i s t i c s  should be based on a proper  con—
siderat . ion of th ree  e lemen t s  — extreme value s t a t ist i c s , f r ac tu re
mechanics , and m at er i a l  m i c r o s tr u c t u r e . W e ib u l lt s theory is based
almost exc lus ive l y on the f i r s t  element. In recent  years , progress
has been made . in i n c o r p o r a t i n g  the o the r  two el .~~~en t s  i n to  weakest
link theory . The purpose  of the p resen t  paper  is to o u t lin e  the
curren t s t a t u s  of f r a c t u re  s t a ti st cs and i n d i c a t e  some d i rec t ions
of expected f u t u r e  p rogress .  in the  e f f o r t  to give a clear and
concise descrip t i o n  of the f i e l d , h i s t o r i ca l  perspect ive  has been
somewhat sli ghted . The p r imary  emp hasis is on the underly ing
physical  concep ts  r a the r than computa t iona l  techni ques.  It is
hoped that  those whose c o n t r i b u tio n s  may have been om i t t e d  or
underemp h a s iz e d  w i l l  understand and forg ive .

WEAKEST LINK THEORY (WLT)

We f i r s t  der ive the  fundamental equation of weakest link
theory . Let it be assumed t ha t  a s t ressed sol id  can fail due to
any of a number of independent and mutuall y excl usive me chanisms
or causes , each i n~ lyin g in finit e sima l probability of failure
(~ P f ) f .  The pr o~r J l i 1 i t y  t h at  th ~ i t th mechan i sm w i l l  no t  cause
f a ilu r e  is (Ps) i I — (~ P~) j~. The overall  p r o b a b i l i t y  of sur-
vival is the product of the individual probabilities of survival.,
I.e.,



~

3

II (
~~

) . I!~ 1 -- (~ ) }
fl exp [- (~Pi )j  ~~ eXI ~~~~~ (~

P
f)~~~ . (1)

T1~e sum of the iii divic lua i p r o bab i l i t i e s  of failLi ;~ appearing in the
f ina l,  equal  i ty above was called b y Weihu l l  the “ risk of r u p tu r e ”
and was given t h e  symbol B.

In e v a l u a t ing  B , Weihu ll .  added t oge the r  the p r o b a b i l i t ie s  of
fa i lu re  of a l l  the elements of volume t~V in the e nt i r e  body. The
p r o b a b i l i t y  of f a i l u r e  of the i ’ th e lement  ~V . in simp le tension
a, for exa mp le , is 1

(~~
P
f) 

n(a) M’. , (2)

where n(a) is the number of flaws per unit vol.umewi th a strength
less than a. If n(a) is less than un i ty, i t  can be regarded as the
probabil ity that such a f]aw will occur in a unit volume . Thus,
the probabili ty of failure is given by

P
f 

I — = 1 — Cxp [_ f dv n(a)] . (3)

For a un iformly stressed body

P
f
(G) 1 — exp [— V n(a)] , (4)

or

(5)

if  P f(ci)  is de t e r m i n a d  by tes t ing a number of specimen s in simp l.e
tension , Eq. (5) can be used to obtai.n n(a) and E q.  (3) can then be
used to eva lua te  the prob a b i l i t y  of f a i lu re  of a body of a rb i t r a ry
size and shape and n o n t in i f o r m l y d i s t r i b u t e d  tens i le  s t re ss .  By
assuming, as W cibu l . l d i d , tha t  compressive stresses do not  contrib-
ute to f r a c t u r e , the  above procedure  can also be used to c al c u l a t e
the p r o b a b i l i t y  of f a i l u r e  in pure  b e n d i n g ,  or iii’Jced any comb ina-
tion of un iaxial  teasion and compr ession .  A l i m i t a t i o n  to th is
procedure is that. i i i  i gn o r ing  f r a c t u r e  due to compress ion , it does
not adequately account for failure in all stress states.

.
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Weihul l  a l s o  gave a p rocedure  for  c a l c u l a t i n g  Pf f o r  p o l .y axia l
s t r es s  s t a te s  when the f a i  l u re  statisLics for sisinle t e n s i o n  are
known . Basicall y ,  his proc edure is to calculate B by ~v c r ag ing
the t e ns i l e  s t ress  in all directions [1 ,3]. This is intui tive ly
plausible , but not rigorous , and i t  has  been q ues t io n e d  b y some
Inves tigators . I-tarnctt et al. [4] have formulated a number of
alterna Live procedures they considered equall y p lausible . Presum-
abl y, in part at l e a nt , because of doubts c o n c e r n i n g  t h ’ i hu l l ’ s
procedur e, some investigators [5,6,7] have cl osen to Use an
approx imat ion  in which  i t  is assumed tha t  w i t h ì  r e spec t  to f r a c t u r e ,
the principal s tresse s ac t independen tly ,  i.e . ,

P
5

(a 1, 02~ 
0
3
) = 

~S~°1~ 
Ps(02) Ps (0 3) , (6)

where a~~, 02, 03 are the pr incipal  s t resses.

There is some ev idence  t hat  Weihu l l  had second th ough t s  con-
cerning the validity of h i s  recommended procedure , since he w r o t e
In 1966 [8]: “A n o t h e r  problem of a more theoretical nature will be
to deduce the effect , of bi— and triaxiality on the distri bution
functions of one~ iimnsioual. stresses. I I the pr inci pa l stresses
are acting indcpen .lentl y of each oiher , and it seems t h a t  such
mate r i al s  may exis t , then the problem may be so luble  along l i n e s
prev ious ly ske t ched , in other cases the solution is very intricate
and w i l l  c e r t a i n l y r equ i r e  close examina t ion  of the ph ysical
behavior of t h e  m a t e r i a l  in ques t ion .”

WLT FOR I’OLYAXIAL STRESS CONI)IT IONS

To put  w u a k ’ s t  l ink theory  fo r  pol yaxi a l .  s t re ss  slates on a
firm physical foundation , we will t~~ke the explicit assumption t ha t
the flaws responsible for fracture are iaicrocraclz s in the material.
We will further aisuac th a t  the cracks do not interact , and tha t
each crack has a cr 1 t i c a l  s t ress  o~ d e f i n e d  as the rinate tensile
stress app l ied  no rm a l  to the c r a c k  p l ane  wh i ch w i l l  t i u n e  f r a c t u r e .
Fracture under combined stresse s occurs when the e f fe c t  ive stress
oc ac t ing  on the crack is e q u a l  to 0~~. The effectiv e stress is
some function of the app lied stresses at the locati on of the crack ,
and its prec i se f or m depends on the  f r a c t u r e  c r i t e r i o n  employed .
The search for fracture criteria leads us to fracture mechanics.
Before d i s c u s s i n g  p a r t i c u l a r  f r a c t u r e  c r i t e r i a , however , we form u-
la te  the theory of f ra c t u r e  s t a t i s t i c s  fo r  an ar b i t r a r y  f r a c t u r e
criterion by leav ing 0e unspecified.

The p o t e n t i a l. causes  of f a i l u r e  are the Ind ividual cracks.
For purposes of ana l y s is , it  is conven ien t  to group t h e  cracks

-- -,- —~~~~~~~~.- , , - - . _ _ _ _ _ _
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accord  iri l t o  locat iou , the app i t e d  s t ress  s t a t e , and c ra ’.k c r i t  ical
s t r e s s .  We assume that the st  ress s t a t e  v ar i e s  slowl y so t h a t .
w i t h i n  a volume c lemon t E~V a l l  c r acks  w i l l  be subjc c t to the sa n e
macroscop ic  s t r ess . We a lso  assume t ’a at  the m a t e r i a l  is  mac r o—
scop i c a l l  y homogeneous . so dial  a f u n c t i o n  N (o~~) can b~ defined as
t h e  number  of c racks  per u n i t  voluins h a v i n g  a c r i t i c a l  str e ss  equa l
to or less than 0c’ • The preh zbi U t y  t h a t  a c r o c I - . havi ad, a c r i t i c al
s t ress  in the range G~~ to  0~~ + d(J c exi st s ii: ~~~~~~~ d e cent ’ ~V is
the AV [ c) 1’

~~
0c ] d a .

If such a crack is ac tua l l y p re sen t , the p r o b a b i L i t y  t ha t  i t
will f r a c t u r e  depends  on i t s  o r i e n t a t i o n , t h e  st r e s s  s ta t e , and
the f r a c t u r e  c r i t e r i o n . We assum e there  is a 501 id  ang le  ~? such
tha t  f r a c t u r e  of a c rack  w i l l  o c c u r  i f  and onl y i f  i t s  nornal lies
wi th in  £2. Th is  u t e a n s  t h a t  if  t h e  no rm a l  l i e s  within 

~~
, ~~~ >

where o~ is the e ffective s t re s s  c o r r e s p on d i n g  to t h e  f r a c t u r e  c c i —
ten on selected , If  the c:-aeks are randomly oriented , the proba—
b i li  ty  t h a t  a c rack  w i l l  f r a c t u r e  u n d e r  the app l led stress ~ is
£2(~~, a )  /4~~.

Now t h e  ~ r ooab i  i i ty  of f a l  l u r e  due to a crack in the  c r i t i cal
stress r ange  dO (. I oca ed [n vol uua e element.  A~’ is t he  p r o d u c t  of the
above ~~ i oh~ b i l i t  en , i.e •

d~4(o ) \ c2(~~,a )
(Ar 1) (~v ---

~~~
-- -

~~
-. do~~ (— 7’—~-) 

(7)

Substituting Eq. (7) into E q.  ( 1) ,  and chang ing sums i n t o  i n t e g r a l s ,
we ob tai n

cxp 
[~~ 

f dv f d a  
~~~~~~~~~~~~

We note in pa ss ing  t ha t  N (o~~
) is i n d e p e n d e n t  of ~~~t ross s tat e

and depend s cai ly on t h e  r u a t e r i a l  . Also , since 0c is del in~ d as
the s tress wh ich  causes f rac t u r e  when app l i e d  n o r m a l  to  the  cr ack
p lane , N( 0~ ) catu be conver ted d i r e c t ly in to  crack  s iz e  d i s t r i bu t L u .
when K ic is known . in these r e spec t s  i t  d i f f e r s  from W e i h u l l ’ s n
and the g(S)  of McChiuit ock and others [9,10 ,11]. These functions
repre sent the number of cracks p e r unit volume that will be frac-
tured by a p ar t  i cu l a r  app l ied  s t re ss  st at e , and der iva tive  of such
a function respectivel y ,  and they depend on the stress ratio. For
the particular case of hydros ta t i c t ension , N(c T ) n (a)and N’(a~g(o), because t h e n  £2 4ir or zero de pendi ng on the stress level.
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In situp ) e t e n s  ion and e q u i b i a x i a l  t u n s i  au  , ;m ia  I y i i  cal  expres-
sions can be fouf ld  f o r  £2 f o r  SO lid! f r a c t u r e  cr  i t  or i a , at  leas t  , and
used together  w i t h  E q.  (3) to c v i i  u at  l’s. i n h u t ’ l ’ , u S d ’  r u  case ,
~ e f ind  Sl b y i n t e g rat in g  d~7 over the  .igc i n  wh i~~h O e > O c•  One —

way of accotup i I slu ng t h i s  is t o  i n t e g i a  o ev e r  t h e  t n t  i r e  a n g u l a r
range b u t  inc luth  a s u i t a b le  operator II in  - inte gral

= ex~ [ — 1ff dV d~~ do h1 (~~~, o )  , (9)

where

H(a , a ) = 1 when a > ae C e c

= 0 where 0e < ~c 
‘ (10)

~w car ry  out the i n te g r a l  over a f i r s t , wi th  the resul  t

exp - ff  dv df ~ N ( o~~] , (11)

The e f f e c t i ve  s t re s s  c-sw lag f r a c t u r e  is a f un c t  ion of both
the compc ’nent  of St  rtma- ; nor :: ’- 1 to t h e  c r~ ck p I a n o  , , and the
shear s t ress  ‘r p ar a l  l€~L to  the cr -h p l an e . An a p p r o x i  mit ion Ire—
quen ti y emp loyed is  the as:;u:.pt i on  t h a t  the  cracks are shear—
insens i t ive , i .e  • , t h a t  O~ 0~~~~• Using  this a p p r o x i m a t i o n ,
E q.  (11) beco mes eq ui valen t to W- - ib u l l ’ s rule fo r  i n l y a x i a l  s t r e ss
states Ii] , and E q.  (8) reduces  to the equatina of P i t d o r f  and
Crose [ 12L E q. (8) and E q .  ( i i )  are e q uiv a l e n t forrnul :ut ions of
the same theory . The phys ica l  j u s t i f ic at i o n  of dic- f o rm e r is the
more readi ly  a p p a r e n t , b u t  the l a t t e r  is more conven i en t  fo r  com-
pu ta t iona l  purposes .

RELATION TO CRIFI ITU THE ORY

In 1924 , G r i f f i t h  113) pub~~ishccl a t heo ry  f o r  the fracture of
solids under  b i a x i a l ,  s t ress  condi t ions .  lie a s sum- ’ i  t h e  p resence  of
a large number of id e n t i ca l  cav i t i es  in the  f o r m  of n e a r ly  f l a t
e l l i p t i c a l ,  cy l in d e r s  ( G r i f f i t h  c racks)  w i  ilu t h e i r  ax i s no rmul to
the p lane of t h u e  S t  r esse5 ;  , h u t  o t h e r wi s e  r a n d o m l y or i e uu t ed , lie
calcul a ted tite m i x  i t i u m  pe r iphera l  tensi i.e strew cm the I roe s u i r —
face of such a crack a~ a function of c r a c k  or i - n t a t  t ori , and
assuncd fract nrc would occur whuc riever Lb is r io> :  inn :, : ~‘ u l  ìue e x ce e de d
the intr insic streng th of the m aterial



This frac tu r c i  cr  i t o  n o n  lo ch to the fa i  l u r e  enve lop es  shcmrn in
Fig .  1. in t h e  t ens  i o n — t e n s i o n  q u ad r an t  and most  of the ten sion—
compress ion q u a d r a n t , f a i l u r e  obeys a uula x i in u nu tensile stress cr1—
ten on . Fracture initiates in a crack whose p l ane  is normal  to  the
largest princi pal tensile stress. Thus, onl y the normal stress a

~acts oct the crack plane , and tensile—type fractures result. In the
por tion of the tension-- compression quadrant near the compression
axis , materi al s treng th is locall y exceeded when the crack normal
Is inclined at somewhat more. than /45

0 to the axis of maximum

cr
2

p

h

- Ba a /

Fig. 1. C o m p a r i s o n  of Frac ture  Theories for Biaxial Stresses
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tension . Here both a
~ 

and T contribute to failure and the result-
ing oblique frac ture is often called a shear—type failure.

In any crack—based statistical theory it is most unlikely that
the weakest crack will be oriented at exactly the angle of maximum
vulnerability, so Griffith ’s umrvts must be regarded as the lower
limit for fracture , i.e., they represent the coutaur for
Pf(o1,02) < < <  1. A typical P1(01,02) 0.5 contour , for  the case
of shear—insensi tive cracks , is shown as a dashed curve. This
curve covers both quadrants almost completely , bu t does no t provide
for failure due to pure compression . In the case of shear—sensitive
cracks , the entire Pf(01,02) = 0.5 contour predicted by WLT will.
fa l l  slightly outside of Griffith ’s failure envelope as shown sche-
matically in Fig. 1. For high compressive stresses , the resul ts
differ signif icantly from those for shear—insensitive cracks.
However , as noted earlier , in this reg ion WLT does no t app ly.
Thus, Weibull t heory  and the more r-efined theories to be discussed
later are liraited to cases in which no principal compressive stress
exceeds the maximum princ ipal tensi le stress in absolute value by
more than a f a c t o r  of about  3 . This limitation is probably not too
serious from a p rac t i ca l  poin t of view because the percent disper-
sion in fracture stress is generally much less in compression than
in tension [14 ,15).

CRACK DENSITY FUNCTIONS

The deriva tive of the crack density function , N’(a~ ), gives
the number of cracks per uni t vol ume per uni t range in cri tical
stress. One might at first be inclined to expect this function to
be Gaussian or near—Gaussian . In actuality it turns out that
Gaussian distributions are incompatible with WLT. This is readily
demonstrated as follows .

We have seen that any WLT must take the form

= — exp [— f (o)] , (12)

whence

P~~(c) = — P~~(a) = f ’ ( o )  exp [— f(a)] . (13)

If the distribution is Gaussian ,

P (cl) A exp [— a (0 — b) 2]  . (14)
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Eq. (13) and Eq. (14) are incompatible , because if f’(a) is a con-
stan t, f(o) cannot be a quadratic function . Another reason for
excluding the Gaussian distribution is that it implies a nonvanish—
ing probab ility of tensile failure when the applied stress is
compression .

Weibull introduced two distribution functions

Pf
(O) = 1 — exp [— V k0~] (15)

and

P
f
(0) = 1 — exp [— Vk (a — 0 )

in] (a > o~) (16a)

0 (0 < Cu
)  (16b )

Each may be regarded as a skewed Gaussian distribution with a
skewness , wh ich can be ei ther posi tive or nega tive , de termined by
the value of m . The 2—parameter form allows failure to occur at
any pos itive value of the tensile stress , while the 3—parameter
form imp lies t h a t  f r a c t u r e  cann ot occur for  0 < a

U

The funct ion Pf(0) is conventionally de termined by conduc ting
N tests and numbering the observed fracture stresses Cj.. •0N in
ascending order. It is then usual ly assumed that

P
f
(0~) = ii—:~:’~--r • (17)

A more sophisticated statistical treatment [16] leads to the con-
clusion tha t

— 0.3
P1

(o~) N + 0.4 • (18)

The difference be tween Eq. (17) and Eq. ( 18) become s insignificant
for large values of N and for simplicity we shall use Eq. (17).

A simple technique for determining the parameters iii , a , and
k is to write Eq. (16a) in the form U

Zn Zn (1 — P
1
)’ = Zn Vk + in Zn (a — a~

) . (19)

Next , Zn Zn (I - P1) Is plotted against Zn (a — °~
) for various

assumed values of ~~ The value of a adopted is that for which
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the N data points most nearly lie on a straight line. The slope of
the line chosen is m , and Vk is the value of Zn (1 — Pf ) l  for
o = o~ + 1. When Weibull’s 2—parameter form is used , ~ is arbi-
trarily taken to be zero. U

Before passing on , we note that a least squares fit in
Zn Zn (1 — Pf ) 1  vs. Zn (a — a

~
) space is in general not a least

squares fit in Pf vs. C space. Consequently, the Weibull form
found in the manner described is not the best possible fit to the
data . However , if the scatter in the data is not large, it will
be adequate for most practical purposes.

Fracture statistics are relatively simp le when We ibull’s
2—parameter form is used. If the probability of failure in simple
tension is

Pf 
— I — exp (.- V k

T 0
in

) , (20)

then that in bending can be shown to be [1]

Pf 
— 1 — exp [— V kE a

m
) ]  , (21)

where kB/kT depends on the cross section. For a rectangular cross
section

= k
T
/(2m + 2) . (22)

Under the uniform principal stresses a~, a2, O
3~ 

the probability of
failure is given by

Pf 
= 1 - exp V k (-

~
, 
~

) 01m] 
. (23)

The constant k (02/al, a3/a1) is an analytical function of the
stress ratios [ii]. Many other cases are treated in [181.

Weibul].’s 3—parameter representation has a similar universal
applicability when attention is limited to uniaxial stress prob-
lems. In going from uniaxial to polyaxial stress states~ however,
the functional form changes [19], i.e. it is not possible to express
both uniaxial and polyaxial stress data in the form
Pf = 1 — exp ( — V k (a — cy~)m]. To assist those desiring to use
Weibull’s 3—parameter representation in conjunction with his theory
for polyaxial stress states , Dukes [20] has carried out parametric
calculations with the aid of a computer. 

~~~~• - -~~~~~~ •~~ •- -
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Weakest link theory implies a volume effect that is sometimes
misapplied. Consider , for instance, the situation illustrated
schematically in Fig. 2. Let us assume specimens were tested , so 9
we know Pf(G) over the range 0.1 Z Pf < 0.9. The known region is
shown as a solid curve , and the dotted extension is an extrapola-
tion of the data , accomplished by assuming that the mathematical
function used to represent the test data continu~c to be valid out-
side the range in which it was tested . All that WLT can tell us is
that a specimen 10 times larger will have 10 times the risk of rup—
tu~ over the stress range tested. It does not answer the generally
more interesting question , what stresses correspond to

1 

_WLT

0.4 
___ 1~~L_ _. 1L

~ 1 

: : 

DATA

41 
_ _ _ _ _  

SPECULATION
0.04 ____  _ _ _ _ _

I
0.02 —— ____  ____  ______

/
0. 01  ____  ____  ______

I 2 4 10
a

Fig. 2. Data, WLT inference
concerning volume effect, an~speculative extra polations.
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probabilities of failure of the larger specimen in the probability
range tes ted , i.e., 0.1 ~ Pf ~ 0.9, unless the validity of the
extrapolation to lower stress levels can be established .

This raises the question whether the Weibull distribution
functions have a fundamental significance that n”c’.ht justify confi-
dence in such extrapolation . Weibull made no such claim; he
regarded them only as convenient mathema~ ical tools having wide
applicability [21). It is true that they coincide with the third
asymptotic form of extreme value theory . However , the founders of
this theory did not assert that all distributions must approach a
limiting form , but only that if a distribution does approach a
limiting form , it must be one of the three identified in the theory
of extreme values [22 ,23). Basically, the limiting form results
when a distribution can be represented as a power series. When
this happens , only the leading term need be considered for large
samp les (i .e . lar~ t spe cimens w ith very many cracks). W~ shall
show la ter , howeve r , that microstructural considerations suggest
that such a pou~~r series is not possible , and that as a result no
limiting form exists for fracture .

• FRACTURE CRITERIA

The direc t stress app lied normal to a crack p lane , o~~, results
in a very high local stress at the root of the crack , while direct
stresses in the plane of the crack do not. The shear stress t
app lied parallel to the crack plane also results in very high local
stresses. Consequently, the effective stress a causing f rac ture
Is a func tion of both a and T.

n

The statistical analysis of fracture is appreciab ly simplified ,
however , by the assumption that a~ a~ , i.e. that the cracks are
shear—insensitiv e . In this case the properties of the cracks are
comp l e t e l y  c h a r a c t e r i z e d  by 0~~, the remote stress normal to the
crack plane that  w i l l  cause f racture . There is then no need to
specify the size or shape of the crack or Poisson ’s ratio. And
because any given crac~’ is weakest when briented normal to the
largest principal tensile stress , as pointed out in the section
“Relation to Griffith Theory ,” the approximation 0e = 0n is no t a

• ba~ one . This approximation was explicitly iaade by Batdorf and
Crose [24~ , and is imp licit in Weibull ’s treatment of polyaxial
stress states ~1 ] .

The fractur’ criterion used by Griffith to take into account
the e f f e c ts o f shear is the assumption that fracture occurs when
the local tensile stress at some point on the crack surface
exceeds the intrinsic strength of the material. Many authors have
discussed the stress distribution around cavities of various types



13

under various loading conditio ns . For present purposes , the most
concise and general treatment is probably that of Mirand y and Pau l
[25 ) who give an explicit formula for the maximum stress on the
surface of an ellipsoid with semiaxes a ? b >> c under arbitrary
applied loads. They find that

~ 
+ 
\fa~ + F 

} 

, (24)

where E is an elliptic integral that depends on b/a and F is a com-
p licated function of the geometry of the crack and its orientation
relative to the shear stress . We have defined the effective stress
to be a

~ 
in the absence of shear , and some function of a~ and T

when shear is present. Accordingly, we conclude that for a mate-
rial containing cracks of only a single plan form ( i . e .  a fixed
value of b/a)

a = 0
n 
+ 

\J~~~~~
+ ~

2 
F . (25)

Using the formulas in [25], it can be shown that for a Griffith
crack (G.C.) with its axis normal to the applied shear stress

ae~~~ }{a + \f~
2 + T

2 (c .C. )  , (26)

while for a penny—shaped crack ( P . S . C . )

~ t a n + ~~~a
2 + t 2 / (1  - O.5v) 2 } ( P . S . C . )  , (27)

where v is  Poisson ’ s ratio. The latter , possibl y less familiar
result , is also given in [26].

There are , howeve r , grounds for doubting that maximum local
tensile stress represents an acceptable frac t ure criterion . Con-
sider , for instance , an ellipsoidal cavity with principal axe s
a — 4b loaded in tension parallel to the c axis. The maxfn~um local
stress occurs in the equatorial plane , and it is uniform around the
entire circumference . Thus, according to the maximum local tensile
stress criterion , all points on the equatorial belt are equally
likely to fracture and the crack should advance in all directions
in its own plane . On the other hand , the region which is above
some fixed fraction of the maximum stress is four times as wide at
the ends of the b axis as at the ends of the a axis . Thus , if
stressed volume is important , growth should start firs t at the ends

—4
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of the b axis. Simi larly , the stress intensity factor is largest
at the ends of the b axis , where it is twice as large as at the
ends of the a axis. If stress intensity governs frac ture , the b
axis should extend first, and the crack should circularize. It Is
generally agreed that this is what actually happens.

Another fracture criterion is the assumption chat fracture
occurs when the elastic strain energy released when the crack grows
is equal to the energy stored in the newly created free surfaces,
i.e. when the strain energy release rate reaches some critical
value. The strain energy release rates are well—established for a
Griffith crack or penny—shaped crack growing in its own plane.
For the former [27]

= 
E [K1 

+ K
11] 

, (28)

where

E = elastic modulus

• K 1 ’- a~~/ 7  (29)

K11
= t~~/~~T . (30)

Thus,

C + (G.C.) . (31)

For the latter [28]

= 
(1 

E + K~1 
+ 

(
~~ 

_~~ 2) K~11] 
, (32)

where

K
1 

= 2% ~/ 7 ~~ (33)

1(11 4 t v’7~~sIn y/(2 — v) (34)

K111 
= 4 ‘r / T hc o s  y (1 — V ) / ( 2  — v) . (35)

The minimum value of C occurs at the points on the crack periphery
where only modes I and II are involved , and here

-
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C = + T~~/ (1  - 0 .5~ ) 2 
(P.S.C.) . (36)

Unfortunatel y, under the couibined action of a~ and r , cracks
do not extend in their own plane so the above expressions are not
strictly correct. There is at presen t no conse~’~w~ regarding the
proper fracture criterion for cracks extending out of their plane.
Swedlow [29) listed nearly thirty d i f f e~.lr.~ treatments of this sub-
ject that had appeared by 1975 , and others have been proposed since
that time. We will not attempt to employ any of these theories in
this review . Instead , we will use the equations just derived not-
ing, however, that the true value of 0e mus’ be smaller than that
found for coplanar extension. That is because the lowest instabil-
ity mode is the mode that actually occurs .

Some idea of the differences between the various fracture cri-
teria discussed herein can be obtained by assuming the material
obeys the Weibull 2—parameter form [Eq. (15)], and plotting the
ratio of the ri -k of rupture under equibiaxial tension to that for
uniaxial tension vs. the parameter m. This is done in Fig. 3
which is adapted from [17] and [30]. The ratio is largest for
shear insensitive cracks . The remaining curves are for the cri—

~teria in Eqs. (26), (27), (31), and (36) respectively. We note
that the ratio keq bias~”kuniax 

increases with m for all criteria,
and is smallest for the fracture criteria based on strain energy
release rate. Also included in the comparison is the assumption
that with respect to fracture , the principal stresses behave inde-
pendently. This leads to a constant ratio of 2. The comparison
suggests that for m ~ 3 the independence assumption will lead to
unconservative estimates of the statistics of failure in biaxial
tension. We note in passing that for the low values of Pf desired
in most structural applications, the failure probability ratio is
the same as the k ratio.

Experimental data on uniaxial and equibiaxial bending of alu-
mina plates were recently obtained by Sines and Giovan [30]. In
Fig. 4 the equihiaxial data are approximated by a Weibull
2—parameter curve . The uniaxial results were computed for shear—
insensitive cracks and also for the fracture criteria listed in
Eq. (27) and Eq. (36). As would be anticipated on the basis of the
preceding discussion , the agreement is best using Eq. (36). For
details of the analysis , see [30].

The relative merits of various fracture criteria can also be
tested in other ways.  For instance , P etrovic and Mendiratta [32)
tested the variation of tensile fracture stress of controlled sur-
face cracks with crack angle. The conclusion from this experiment
is that Eqs. (31) and (36) are in reasonably good agreement with
experiment , and are the bes t  of the c r i t e r i a  listed in this  paper.
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Fig. 3. Relation Eetweert Failure Probability Under Equibiaxial
Loading and That for Uniaxial Loading as a Function of
Weibull Parame ter in.

WLT FOR ANI SOTROPIC MATERIALS

Anisotropic brittle materials may be anisotrop ic with respect
to their elastic properties , their fracture properties , or both .
The elastic anisotropy will influence the stresses resulting from
a given load application , but will not directly affect the calcu—
lation of probability of failure, which depends only on the stress
state and crack distribution.

Two di f ferent  approximate techniques have been proposed for
determin ing the fracture statistics of certain types of polygraph—
ite that are isotropic in one plane but have a lower fracture
stress in the direction normal to the plane of isotropy. In one
approach , the cracks were assumed randomly oriented , but they were
given critical stresses that varied with orientation (31). In the
other , the cr i t ical  stresses were assumed unaffected by orientation ,
but cracks were g iven a preferred orien tation [3 2 ) .  It is likely
that there is ac t ually both a preferred orientation and a variation
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Fig. 4. Theory Compared with Data of Giovan and Sines

in crack strength with orientation , but a theory incorporat ing both
would be considerably more complex and not really needed , at least
for graphite . Both theories that attribute the entire anisotropy
to onl y one e f f ec t  appear to be in satisfactory agreemen t with the
available data.

WLT FOR SURFACE DISTRIBUTED C RACKS

In his first paper on the statistics of fracture , We ibull
included a discussion of surface —distributed flaws [11. In this
treatment , the only change was to replace B f n 1 ( o)  dV by
B — f n2 (a) dA where A represents area , and 

~2 
might or might not

be the same as 
~~ 

Thus the analogy to the theory for volume dis-
tribution flaws is very close.

In a more recent analysis the fracture statistics of surface
distributed cracks have been worked out on the assumption that crack
planes are always norma l to the mat erial surface [35] .  As a result ,
the orientation of a crack is specified by a single angle , whereas
for volume distributed cracks two angles are required . The

.

L ~~~~~~~~-
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analogue to Eq. (8) applicable to surface distributed cracks of the
type under discussion is

= exp [
~ 

f f  dA do 

~ 

(37)

A rather surprising relation exists be tween  the fracture sta-
tistics fo r volume d is t r ibuted  cracks and the fracture statistics
for surface distributed cracks. Let us assume that uniaxial data
are used to determine the f r a c t u r e  s ta t is t ics  for  specimens in
uniform biaxial tension . It has been shown [36 ] that the result
is the same for both theories , i.e., it does not matter whether we
use Eq. (8) or Eci . (3 7 ) .  This is qui te  a convenience for those who
like to do their own calculating. Finding the biaxial stress sta-
tistics for Weibull ’s 3—parameter form using Eq. (8) generally
requires the use of a large digital computer. But using Eq. (37)
the solution can readily be found using a simple programmable hand
computer such as the HP—25 or SR— 56 .

There are materials having surface distributed cracks but no
interior cracks , e.g. glass , but probab ly no materials with volume

•d i s t r i bu t ed  crack s , b u t  no su r face  cracks.  lt is known f rom frac-
ture mechanics that a crack near the surface is generally weaker
than an identical crack far from the surface. This complicates the
interpretation of laboratory data on small specimens and the appli-
cation of the results to larger specimens . It becomes necessary to
separate out the surface and volume contributions to the fracture
statistics. An 3nalysis of this type has recently been carried
out by Rebholz and Teter [37].

MICROSTRUCTURAL CONSIDERATIONS

So f a r  our discussion of f ractu re s ta t i s tics  has been based
on a combination of extreme value theory and fracture mechanics.
The crack dens i ty  fu nction h ad to be inferred from test data , and
it was pointed out that extrapolation of this function to stresses
outside the region bounded by the highest and lowest observed frac-
ture stresses is unwarranted . Thus without additional sources of
information it is not possible to obtain reliable estimates of the
f r a c t u r e  behavior of very much larger specimens or the stresses at
which extreme ly low probabi l i t ies  of fai lure can be assured .

To resolve this difficulty , McC1intock [23) recently proposed
a theory for the crack density function based on microstructural
considerations. He assumed that cracks are random aggregations of
imperfectly bonded pairs of grains. If the probability that two
adjacent grains are unbonded is q, the probability that two such

I— ~~~- -- .~~~~~~~~~~ - - - - - -  -~~~~~- - - -- --
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unbonded pairs are side by side is q
2
, etc. In this manner the

statistics of crack size can be found , and using the value of the
critical stress intensity factor for the material this can be con-
verted into statistics of critical stress. From this in turn one
can obtain the statistics of failure . The material model employed
by McClintock was a 2—dimensional one in which all grains were
identical rectangles and all cracks were normal to the applied ten-
sile stress. It was shown that the probability of a crack being
longer than a is exp 1— a/A], and that the resulting fracture sta-
tistics do not approach an asymptotic form for large specimens.

This theory was similar in many ways to one published earlier
by Fisher and Holloman [38]. These authors considered randomly
orien ted , penny—shaped cracks in a 3—dimensional elastic solid .
They made the judgmen tally—based assumption that the probability
of a crack having a radius larger than r is exp [— nA ). Using this
size distribution they used fracture mechanics to obtain a critical
stress distribution . Employing the assumption 0e = a~ , they thenworked out the fracture statistics. The relation of their work to
Weibull’s and other WLT’s escaped general attention because they
retained the binomial form in their calculations rather than con-
verting to exponentials [see Eq. (1)].

Batdorf [39] applied the McClintock concept of the origin of
cracks to a consideration of randomly oriented penny—shaped cracks
in a 3—dimensional polycrystal. He found that the probability of
a cr ack havin g a radius greater than r is exp [— r2/A2]. The frac-
ture criterion employed was that expressed in Eq. (31).

Among the principal findings of this theory are the following:

(1) The total number of cracks is finite rather than infinite
as in Weibull theory . The most probable critical stress is s~ 1
where s is a reduced stress to be discussed later. Weibull’s 2—
and 3—parameter forms imply that the number of cracks with a given
fracture stress increases monotonically with stress; thus the most
probable fracture stress is inf ini ty.

(2) The probability of fai lure in simple tension is given by

Pf
(S)  = 1 — exp N V  J 5 

(i 
— .!.~~

)  
±-~ç exp 

(
~ 

ii~~ ) 
d s

c] 
(38)

where N 0V is the total  number of cracks. For a suff icient ly small
probability of fa i lure
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Pf (s) (NV /4)s
4 exp (— i/~~ ) (39)

(3) Examining Eq. (39) we see that Pf(s) = 0 for s = 0, and
Pf( S )  > 0 when s > 0. However, Pf(s) cannot be expressed as a
power series in s because at s = 0, Pf and all its derivatives
vanish. It turn s out that over a finite ran~e of Pf such as
0.01 ~ P~ ~ 0.99, the prediction of this theory can be fitted
very closely using We ibull’ s 3—parameter form . However , m and 0~
are both very weak functions of the volume instead of being volume
independent as in Weibull theory. There is some experimental con-
firmation of the predicted direction of change of Weibull param-
eters with volume change [39].

(4) The reduced stress is related to the actual stress
through the equation

0 25 ~ 
r 

~ 
10. 25

s 2oA~~ /K1 
71 [2.n (q )j (40)

where

A is grain cross sectional area
0

K1 is the cr i t ica l  stress in f in i ty  factor for mode I

q is the probability that adjacent grains will be unbonded .

Knowledge of how the fracture statistics depend on grain size,
effectiveness of intergranular bonding, and critical stress inten-
sity factor should be very helpful in determining what changes in
processing variab les will effect desired improvements in material
properties.  Resul ts  qual i tat ively similar to those jus t discussed
are obtained with McClintock’s theory and that of Fisher and
Holloman, except that the latter considered only a structureless
elastic solid , and therefore contained no analogue to Eq. (40).

More recently McClintock has refined his 2—dimensional model
by using regular hexagons for grains and assuming grain boundaries
have a Weibull—type strength distribution [40]. Such a model
assumes no cracks are present ini t ia l ly, but  as the load increases ,
cracks are created , grow , coalesce, and eventually cause the load
capacity of the specimen to pass its peak and decline .

Another theory In which cracks are created by the loading pro—
cess has been devised for polygraphites [41]. This theory is based
on a conside ration of the low tensile strength of a graphi te crys—
tal in the c—direction . The grains are assumed to be randomly
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oriented , so that here and there a chance aggregation of grains of
nearly the same orientation are arrayed in the shape of a penny.
Such an array opens up and acts like a crack when the applied
stress exceeds the capacity of all of its constituent grains.

Two—dimensional models are generally of qualitative rather
than quantitative value, but they help guide our thinking. Three—
dimensional models are obviously preferable in principle , but
their complexity requires greater development time and effort. At
presen t, simplif ying assumptions are used whose influence on the
accuracy of predictions is somewhat uncertain . However , statis tical
theories of fracture incorporating extreme value theory , fracture
mechanics and microstructural considerations are as yet in their
infancy. The present writer believes that such theories offer the
greatest long range promise for  future progress.

STATIC FATIGUE

Up to this point we have discussed primarily idealized short
term brittle fracture in which preexisting cracks are unaffected
by increasing stress until their strength is exceeded , at which
time they expand suddenly and fracture the specimen or structural
part. Some attention was devoted to situations in which cracks
are created and grow as the stress increases. We now consider
fracture resulting from subcritical crack growth — slow growth of
cracks with passage of time, even at constant stress. Whereas the
objective in short—term fracture is to predict the probability of
failure in a given stress state, in static fatigue it is to predict
the time to reach a given probability of failure when the stress
state is specified .

It has been determined by a number of investigators conduct-
ing mode I crack propagation studies that for a given system
[material, temperature , environment, etc.] there is a unique rela-
tionship between crack velocity and the crack tip intensity factor
K

1 
[42 , 43). This is usually expressed in the form

v ’~ A K ~ (41)

If a is the crack length

v — da/dt (42)

and

K
1

— ay ..,/ (43)
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where Y is a geometrical factor . Combining these relations with
Eq. (41) it is readily shown [44 ] that  the time to failure is
given by

T = 2 [K~;’~ — 4~”] [(n — 2) ~
2 AY2] (44)

where K
11 is the initial value of K1.

The prob lem now is how to go from a laboratory si tuation with
an artificial crack of prescribed size growing in mode I to the
general situation In service, in which an unknown d istribu tion of
randomly oriented natural cracks undergoes mixed mode growth in an
arbitrary stress state. Such a goal has yet to be achieved . In
fact it is beyond the state of the art in fracture mechanics , since
it involves a knowledge of the growth rate and eventual critical
stress of a non—planar crack. However, significant progress is
being made .

Most theoretical work in this area depends on three basic
assumptions or limitations (1) the stress state is uniform simple
tension , (2) crack planes are assumed to be normal to the applied
stress both for calculating crack size and for determining crack
velocity , (3) the short—term fracture statistics are adequately
described by Weihull ’s 2—parameter form.

Davidge, McLarin , and Tappin [44] have used these assumptions
to develop strength—probability—time (SPT) relations. An SPT dia-
gram for alumina is shown in Fig. 5. Such a diagram can be used to
find the stress corresçonding Co an acceptable probability of fail-
ure during the design life of a structural element.

Evans and Wiederhorn [45) have shown how the statistics of
failure are affected by prior proof testing. The minimum time to
failure is found by not ing  that  no crack longer than the critical
length for  the proof t € s t  can be present in any of the surviving
specimens. They then use Weibull s tat ist ics and Eq.  (43) to
obtai n th e actual distribution of crack size in the surviving speci-
mens. From this they solve for the probability of fracture as a
f unction of stress and time under load . Results for  soda—lime
glass in water are shown in Fig. 6. The compar ison between theory
and experiment suggests that the former may be conservative by
between a half and a whole order of magnitude. Discrepancies of
this sort may be due in part  to errors in determining material
parameters and propagation constants . The manner in which these
a f fec t  the s ta t is t ics  of fracture in static fatigue have recently
been analyzed in some detail [46,471 .
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DYNAMIC FRACTURE

In dynamic fracture studies, an intense stress pulse of very
short duration passes through the material . Many cracks grow.
After passage of the stress wave , the specimen may still be in one
piece but in damaged condition , or it may be fragmented into a few
or many pieces.

In treating internal crack damage , Curran , Shockey and Seaman
[47,48) have developed a fracture model that takes into account
three aspects of the fracture process not usually included in treat-
ments of short—term fracture : (a) nucleation of cracks as a func-
tion of stress; (b) growth of cracks as a function of stress, t ime,
f racture  toughness , and initial crack size ; Cc) decrease in
strength and stress attenuation with increasing damage.

The nucleation rate is assumed to have the form

N — N exp — ono)/~i]

where ci1~ , is the th reshold stress for nucleation , and N0 and are
constants. The cracks are assumed to be nucleated with a distribu-
tion of radii given by
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~ N (r )  = to N exp [— r/r
1] 

(46)

where toN0 is the total number/cm
3 nucleated in the time interval t

to t + tot , toN is the number having a radius greater than r, and
is a constant. The growth of cracks was tested in many ways ,
the most successful being the assumption that

— r ( a —  0
g0

) / 4 f l  (47)

where r~ is the crack tip viscosity . The threshold stress for crack
growth is assumed to be given by

— 0.5 Kj~ ~[1T/r (48)

where K
1 is the plane strain fracture toughness.
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As the stress wave progresses through a material , energy is
extracted in creating and enlarging cracks, so the pulse is atten-
uated.  The calculation of the number and size of cracks as a
function of time and location , their effects on the stiffness and
damping of the ma terial, and the effects of these in turn on the
stress pulse propagation is a strongly coupled and involved process
requiring a computer code . Accordingly we must Pxpect to be limi-
ted to numerical results for the particular cases chosen for
investigation . However the number and size distributions of
cracks in damaged specimens and fragment size in fragmented speci-
mens are in reasonable agreement with experiment.

In the case of extremely short stress pulses the diffraction
of the wave by cracks and delay times in the initiation of crack
growth become important. These and other refinements in the theory
have been discussed by Kalphoff and Seaman [50] and by Vardar and
Finnie [Si].

CONCLUD ING DISCUSSION

It appears from the foregoing that Weibull ’s theory f~~r uni—
axial stress states is essentially correct as it stands , except
for the limitations that it applies only to tensile type fracturt~s,
and that caution must be exercised in making prediction s imp~ ving a
knowledge of n(a) outside of the stress range in which It ~~ been
established by experiment. We have shown that Weibull’s treatmen t
of polyaxial stress states implies the assumption that cracks are
shear insensitive, i.e., 

~e 
— a~~. Eqs. (8) and (11) allow for the

use of arbitrarily chosen fracture criteria In analyzing polyaxial
stress states. Present evidence suggests that Eq.(3 1. ) Is somewhere
near right, and leads to better results than either Weibull theory
or the assumption of independence of principal stresses. More re-
search is needed , however, in the areas of crack interaction and
shear—type fractures, where weakest link theory does not apply.

Theories including due consideration of extreme value theory ,
fracture mechanics and material microstructure -ye only recently
been introduced into the literature . Although complex, they offer
the greatest long range promise and should be developed much more
completely .

Much progress has recently been made in the statistical treat-
ment of static fatigue , including the effects of proof testing.
The accuracy of predictions Is impaired somewhat , however, by the
tacit assumption that the critical crack is normal to the applied
stress. Also little has been done to analyze time to failure
under polyaxial stress conditions.
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In dynamic f rac ture , considerable success has been achieved
in accounting for  exp eriment al data on crack damage and fragmenta-
tion in the case of materials that have been studied fairly thor-
oughly. There are so many material parameters , however , that opti-
mizing their values to match theory to experiments involving all
of them simultaneously may not result in reliable values for each
parameter. This in turn makes transfer of the knowledge gained to
untested materials difficult.

We conclude from all this that a lot of progress has been
made in statistical theory of fracture, and that useful techniques
exist to guide designers in their consideration of short—term ,
long duration , and dynamic fracture conditions. It is also evident
that a lot of work remains to be done.
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